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Tnis paper is concerned with calculating the internal wave eigen-

functions and idipersion relations for an infinitely deep ocean with an

arbitrary Viisala frequency profile. The method involves numerically
integrating the differential equation from a depth where the profile is

P essentially an exponential function, and therefore where the eigenfunctio
are known explicitly, to the surface where each eigenfunction must vanish.

The equation that is implied by the surface boundary condition determines
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I. INTRODUCTION

Generally, the numerical approach to finding internal wave

eigenfunctions involves numerical integration of the differen-

tial equation over the entire ocean depth. For a deep ocean,

particularly when the horizontal wavelengths of interest are

much shorter than the ocean depth, numerical integration can be

confined to the first few hundred meters of the ocean. This

simplification arises from the fact that for a wide range of

possible profiles the variation in depth dependence is confined

to the upper few hundred meters below the surface, after which

the profile may be approximated by a decaying exponential. More-

over, for horizontal wavelengths much shorter than the ocean

depth the exponentially decaying profile model may be extended

to infinity, i.e., the ocean may be assumed to have infinite

depth. Since the solutions of the differential equation for

a continuously decreasing exponential profile are known in

closed form (they are Bessel functions of the first kind), nu-

merical integration of the differential equation needs to be

carried out only over the upper few hundred meters of depth,

within which an essentially arbitrary Valsala frequency profile

may be prescribed, as derived from experimental data.

The numerical procedure to be presented here will provide

any mode function and dispersion relation over any wavelength

range for an arbitrary Vaisala frequency profile, as long as

it decays exponentially at great depths. The practical limita-

tion, of course, is the amount of computer time one is willing

to expend for results covering an appropriate dynamic range.

For ordinary ranges of physical interest, the required computing

1
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time appears to be of the order of minutes for a dispersion

curve and seconds for a mode function.

Dr. P. A. Selwyn, who was kind enough to review the first

draft of this paper, has called attention to the fact that

there already exists a computer program (Refs. 1 and 2) that

performs calculations similar to those undertaken here, but for

the case in which the ocean depth is finite. One would expect

that it might have been possible to modify the earlier program

so as to adapt it to the infinite depth case as well.

Although, in a sense, the question of that possibility was

moot by the time this information had been disclosed, neverthe-

less, the option still exists for a potential user who, if con-

vinced that the earlier program has sufficient advantages over

the present one, might be willing to risk whatever numerical

complications may be involved in such a task. Therefore, it

seems proper to discuss briefly some of the major similarities

and differences between the two programs. Unfortunately, a

direct comparison of their computational accuracies and speeds

is not feasible at present.*

Both programs rely on the same general method, which is to

start with the appropriate boundary condition at the deep end

of the Vaisala frequency profile and numerically integrate the

differential equation over depth for selected values of the

wave number and phase velocity. These parameters are varied

according to some iteration procedure until the value of the

solution of the differential equation at the ocean surface is

sufficiently close to zero.

The earlier program solves for the phase velocity in terms

of the wave number. Here the converse is true.

*If the adaptation of the earlier program were based on the
same idea used here to account for the boundary condition at
infinity, i.e., matching with the Bessel function solution for
an exponential profile, the running time of the program would
be increased considerably.
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The earlier program uses a fourth-order Runge-Kutta method

for solving the differential equation, so that the error is of

fifth order in the incremental step size. Here the Numerov-

Manning-Millman method is used, and the error is of sixth

order in the incremental step size. This gain in efficiency

occurs because the present method takes advantage of the fact

that the differential equation does not contain a first deriv-

ative term.

The earlier program uses a Newton-Rapheson iteration

scheme to find the eigenvalue, whereas here the regula faZsi

scheme is used. Generally, the Newton-Rapheson iteration con-

verges faster but may fail to converge if the trial value is

not sufficiently close to the true value. However, once star-

ted properly the regula faloi iteration is guaranteed to con-

verge.*

Other differences between the two programs primarily have

to do with how they handle the problem of mode jumping, which

occurs in the calculation when dispersion curves for succes-

sive modes approach each other too closely. The details are

rather involved and it is difficult to assess the relative

merits of the two approaches without considerable further

study. However, it may be worth noting that the nature of the

regula falsi method permits the use of certain eigenvalue prop-

erties, derived from the classical Sturm-Liouville theory,

that aid in resolving the mode-jumping difficulties encountered

by the program presented here.

The mathematical statement of the problem to be solved and

some properties of the eigenfunctions and dispersion relations

needed in the subsequent development are summarized in Chapter

II. In Chapter III the general framework for the numerical

*There are cases in which the convergence is extremely slow,
however. When this happens it has been found expedient to
switch to internal halving, which is less efficient, in gen-
eral, but which converges at a predictable rate.



solution of the dispersion curves is presented. The detailed

description of the algorithm for the numerical solution of the

differential equation and the associated eigenvalues is given

in Chapter IV. The computer implementation of this algorithm

INTMODE is described in Chapters V and VI. A more detailed

description is given in the Appendix.

Some examples of numerical results obtained with INTMODE

are presented in Chapter VII.
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II. DESCRIPTION OF THE PROBLEM AND SOME GENERAL
PROPERTIES OF INTEREST

Interest here is confined to internal waves with horizontal

wavelengths of at most a few kilometers so that the effects of

the inertial frequency do not enter. Acccrdingly, the mode

functions i (y) are determined by the differential equation

d2 + K 2 ( y )  : o,-l!
dY2  jj m2 ] Vm  0,(1

along with the boundary conditions

@m(0) = 0, lim *m(Y) = 0, (2)

where the depth y is measured from the surface y = 0. In (1)

K is a given wave number, Q2 is the mode frequency, and N(Y)m

is the Viis~lH frequency profile associated with a vertical

thermocline in the ocean.

For a given value of K the differential equation (1) sub-

ject to the boundary conditions (2) determines uniquely the

infinite set of mode functions m(y). For each mode a disper-

sion relation is thereby determined; that is, each £2 is a wellm

defined function of K,

Qm = £ (K), m = 1,2, ... , (3)

over the interval

0 < K < co.

5

-- < K<-.



.'.are n for,-: bc,. , o n

i.c:U v ... : ':anish at K = 0. As K becc-es ar-

trar-"y large each asymptoticaily a:rroaches a s-ngIe pcsi-
tive constant P. equal to the maximum value of N(y), the Vis~la
frequency. As K approaches zero the slope of each of the dis-
persion relation curves defined by (3) approaches a different

d~m kim
finite positive value 1/um; i.e., i d Ty = K

The dispersion relations (3) can be expressed parametric-
ally in terms of a quantity v, which approaches um as K approaches

zero; i.e.,

Km = K (v)m
(14)

Km(
m-

where the set of functions K are determined by the differen-

tial equation

d2 m 2N2 2
+ (Y)m Kmm' (5)
dy m m

subject to the boundary conditions (2). From this point of view,
for each value of 4 that is chosen above the minimum value
needed for the existence of the particular modes being considered,
the boundary value problem determines a set of positive real
eigenvalues* Km2 (p), the square root of which provides the Km(p).

According to the general theory of eigenfunctions for the
linear second order differential equation (Ref. 4), if N(y) is
piecewise continuous, bounded and approaches zero as y becomes
infinite, for fixed p there are a finite set of real positive
eigenvalues Km 2.* As P increases, the number of these eigenvalues
also increases, but for p smaller than some critical value there

~2
*Actually, the convention is to regard the quantities - K2 as
the eigenvalues, which results in their being characterized as
negative real.
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may te nc eicenvalues at all.' It is alsc kcwn fror the general

theory that each K. is an increasir)7 functicn of ii (cf. Fef. 5,

P. 357).

It is assumed that the VTisMl. frequency profile N(y)

decays exponentially at great depths. This behavior may be

characterized more conveniently by actually requiring that after

some depth y0, U(y) becomes an exponential function; i.e.,

_-
T b (6)

As observed in Ref. 1 the solution to the boundary value problem

associated with (1) and (2) for an exponential profile of the

form (6) is proportional to a function ¢(y) given by

_-
0(y) = JKb (PbN 0 e b)(7)

Thus, the boundary conditions (2) can be restated as

(0) = 0, 1(y) = A JKb(ubN 0e b), Y.Y0 ' (8)

where A is a constant that can be chosen arbitrarily or to

satisfy some normalization condition.
According to Ref. 3, a W.K.B. solution of (1) can be used

to determine the approximate mth mode dispersion relation; i.e.,

within the W.K.B. approximation the dispersion relation is

determined by the equation

f pdy = - 1 (9)

where
p~)= K [N2 (y) _ a 2 1/2 (0

2212

p(y) EN 2] 2 (10)

2N2(y) - K2 .

7



III. THE NUMERICAL PROCEDURE TO DETERMINE DISPERSION RELATIONS

In this chapter the principles underlying the numerical

procedure to be used for calculating the dispersion relations

will be outlined. The details of the procedure, itself, will

be presented further on.

Since K is an increasing function of p, it follows from

(9) and (10), by considering the limit as K approaches zero,

that the minimum permissible value vm for the mth mode is given

approximately by

rn :- 71' (11),rm 0N(y)dy

Since (11) is only an approximate formula, in order to guaran-

tee that a solution Km exists for the eigenvalue problem, values

of P chosen to calculate the dispersion relation for a given

mode should be somewhat larger; e.g., it would be prudent to

confine the choice of to values such that

+ (m-l)n (12)

.N(y)dy

The smallest value of p given by (12) ought to be large enough
to guarantee the existence of a real Km but, ideally, small

enough to exclude the existence of any higher mode eigenvalue

Kn, n > m. It will be found that this is generally true but

that there are some noteworthy exceptions.

9



For any choice of positive K and V it is possible to find

a solution of the dIfferential equation (5), subject to the

second condition in (8) which determines the necessary initial

values to be imposed for that purpose at the point y0. The

differential equation can be integrated numerically from y0

down to zero, where a value for (O) will thus be acquired. If

the maximum magnitude of the solution over the interval 0 r y - yo

is 1 maxI then a function '(u,K), determined by this process,

may be defined by

=.(L) (13)
' maxl

As defined, T(P,K) is a function of p and K alone; i.e., it is

independent of the normalization constant A.*

Because there are cases in which (12) does not lead to a

satisfactory initial value for p (some modes are skipped) a

slower but safer procedure than relying on the W.K.B. approxi-

mation has been adopted here. The differential equation (5)

is solved numerically, subject to the second condition in (8),

with K set equal to zero and p set equal to a sequence of values
oJN(y)dy For each value of V in the sequence the sign of

*(o) is observed. When a change in the sign occurs the cor-

responding value of V is used as a trial value, and it is

assumed that zero bounds K from below. If it is found that

modes are still skipped, the p increment is decreased and the

procedure repeated.

If K2 happens to be an elgenvalue, then '(p,K) vanishes.

Thus, the problem of calculating the dispersion relations is

*Because it automatically relates error to a specified dynamic
range, the normalization (13) is needed for stability of the
numerical process used to solve (14).

10



equivalent to ,inding the real (posi i.e) rocts K(1j' of the

transcendental equaticn

V( ,K) = 0 (14)

as the parameter v varies. For sufficiently small p there are

no roots, while for 1A in the interval

P 1 W < 12

there is just one root, and for U in the interval

12  P4 < P3

there are exactly two roots, etc.

To calculate the roots of (14), interval halving or, for

more rapid convergence, the reguZa faZei (Ref. E) method can

be used. The numerical procedure given here does, in fact,

rely upon the regula faZei method to solve (14), although the

technique of interval halving is used in certain circumstances,

to be described, in order to reduce computing time.

It is necessary to begin with two trial values for K(u),

K1 and K2 > K1 , such that '(U,KI) and '(],K 2 )_differ in sign,

to guarantee that the root K(p) lies between K1 and K2; i.e.,

K1 ' K(i) K 2

Since K(u) must be positive, initially, the trial value K1 can

be zero. For the initial upper bound K23 a quantity defined

by

K2 Na (15)

where Nmax is the largest value attained by N(y), will suffice.

*The fact that K as defined by (15) is an upper bound can be
seen by multiplying (5) by $ and integrating from 0 to -.
Integration of the derivativT term by parts shows that that
term is negative.

11



For the h17her odes it will again be necessary to begin

with K, 0. However, K 2 may be set equal to the previously

calculated value of K for the mode one step down at the same

value of 1. That is, since it is known that

Kml(j) > Km(U) ,

in calculating Km(o) a value for K given by

K2  Km(i) (16)

can be used.

As indicated, the trial value K 2 should be slightly less

than Km1 (P) to avoid accidentally falling back onto the m-lst

mode dispersion curve because of normal errors to be expected

in the calculation. A test should be included here to guarantee

that the choice of K 2 is not too much less than K m1(u): the

function T(P,K) must change sign in going from K1 to K2*

In order to obtain a trial value satisfying (16), it is

necessary to have an estimate of Km1 (u) that is known to be

too small. Since it is generally not the case that Km_1 would

have been calculated previously for exactly the value of v now

encountered in the mode m calculations, the estimate of Km-l(p)

must be determined by interpolation, e.g., between values

Km-l(P n ) and Km-l (n + Au), where

Pn < P < ]n + 14.

However, if the K versus U curves are concave upward such an

interpolation will produce an estimate that is too large; hence,

the desired sign change in T(pK) would not occur. On the other

*While the reguZa faZei method may still work even if this
requirement is not met, it is not actually guaranteed to con-
verge unless the sign change rule is imposed.

12



hand, a cruder, one-sided, interpclaticn that does guarantee

the sign change can be used. That is, instead of interpolating

between Km 1 ( n) and Km l(Un + AP) the trial value estimate

becomes
- K m-l(ln)
K2 - n (17)

From the fact that 0m-i = Km-1(W/P is a monotonic increasing

function* it can be readily inferred that K2 defined by (17)

will, in fact, be smaller than K

Once K has been calculated for the initial choice of jj for

a given mode, the value of p is increased by adding a small

increment Ap. A corresponding increment for the lower bound

trial value K1 can be obtained from an interpolation analogous

to (17).

That this can be done so that K1 continues to be a lower

bound can be seen as follows. By definition,

K = ij.

Therefore,

dK + d Q
d- =  - (18)

Although Q increases monotonically with )j, it is uniformly bounded

by the maximum Vais~ld frequency; hence, the second term on the

right of (18) approaches zero as p becomes arbitrarily large.

This is evident in view of the fact that, since the derivative
1 dQof log P is -, - approaches zero faster than Then, for

large enough p, according to (18),

L K 2 0 A . (19)

*If it were not, a case of anomolous dispersion would be implied

since, as already observed, K is an increasing function of V.

13
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.oreover, because Q is a monotonic function of i, the estimate

of AK given by (19) is always too small.

Thus, the new K can be chosen in accordance with (19);

i.e.,
K

+ K AP = K (20)

where K is the previously calculated value of K corresponding

to the value of P before the increment AP is added. For modes

higher than the first (m = 1) the use of (17) to obtain the

upper bound K2 continues each time P is incremented, while the

lower bound K1 is obtained from (20). For the first mode, how-

ever, (15) is the only estimate immediately available for the

upper bound K2 as p is incremented, although (20) can still be

used to estimate the lower bound K1 .

14



IV. DETAILS OF THE NUMERICAL PROCEDURE

A. SOLUTION OF THE DIFFERENTIAL EQUATION

The Numerov-Manning-Millman method (Ref. 6, pp. 204-205)

is particularly convenient for solving (5) numerically for given

values of u and K. The method requires two starting values; for

a step size h, i(y ) and W(Y +h) must be furnished initially.

Then thv differential equation can be integrated by means of a

single recursion relation that involves only 1p and its second

derivative, which is obtained from and the relationship sup-

plied by the differential equation, itself.

The starting values of ip are obtained by recognizing that

at y0 and y0+h the profile N(y) is an exponential function of

the form (6). Thus, in accordance with (7), at these points

(y) can be set equal to JKb(UbNoe

When N(y) is prescribed numerically over an interval (O,yo )
the resolution of N(y) implies a limit on how small the step

size h may be taken. Conversely, a natural limitation on how

large h may be is the requirement that it be small compared to

the minimum wavelength X to be considered. Since the wavelength

is given by

2Tr

this means that the size of h is governed by the largest value

to be considered for the wave number K.

15



B. SOLUTION OF THE EIGENVALUE EQUATION

The eigenvalues K that determine the dispersion relation

for each mode are found by solving (14) over an appropriate

range of values for p. For this purpose the regula falsi method

(Ref. 6, pp. 4-5) seems most effective.

In some cases, convergence of the regula falsi method is

too slow. Therefore, if twenty iterations occur without satis-

fying the prescribed error criterion the computer program

switches to interval halving with an error criterion applied

to K rather than p.

C. SELECTING INCREMENTS OF p

In accordance with (12), the increment 6p used to obtain

the starting value of p in going from the dispersion relation

for one mode to that for the next is normally given by adding

increments

1_ (21)

fo00 N(y)dy

until (p,o) changes sign. At the start of the mode, K1 is then

set equal to zero.

If the increment Ap along a single mode is too large, a

Jump to the next mode may occur. This can be guarded against

by calculating (Pu + Au,~K ) which in that case would have a

different sign than (p,K1 ), where K1 is a lower bound used in
calculating K

Ui

Evidently, as a practical matter Ap must not be too large.

It is also true, however, that Ap must not be too small. While,

theoretically, trial values are chosen so as to guarantee the

necessary sign change in T(p,K) for the regua faZsi method,

in practice it turns out that when Au is sufficiently small the

16



si . change may, revertheless,, fail Ito occur. _his is due to

the residual calculation error in the K that corresnonds to the

value of p before it is incremented. This error is sufficient

in some cases to overcome the theoretical inequality relied

upon in the derivation of the rule for selecting K2 "

A compromise rule for selecting the u increment is to let

AP be about L 6i. That is, a reasonable choice that seems

adequate in practice is given by

A= 1 . (22)2j0 N(y)dy

0
D. ESTIMATING THE ERROR IN K

The test used to determine when to stop the reguZa faZei

iterations in calculating K is the condition

I (uK I< .(23)

The value chosen for this purpose in current applications

is 10- 7, which is intended to provide at least a 60 dB dynamic

range for the corresponding mode functions.

Therefore, the error in K is not given directly; however,

it can be estimated by linear extrapolation. If T n is the value

of T(u,K) that just meets the test (23) and T n-1 is the value

of T(u,K) in the iteration just before that one, then the quan-

tity

AiK K n Kn-i (24)
T n- n n-1

where Kn and Kn- 1 are the corresponding estimates of K in the

two iterations, is approximately the rate of change of K with

17
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respect tc a change in(',K). Then the error e In K corre-

sponding to E will be given approximately by

AK
K- E. (25)

The error estimate eK can be used to prevent the anomaly

mentioned earlier, that too small a choice of AP can result in

a failure to obtain a sign change in Yl(,K) using the trial

value K1 obtained by means of (20). The idea is to make sure

that the error in the calculated value of K is always negative,

i.e., that the calculated value of K is too small. This can be

done by subtracting eK after the iterations for K are completed.

18



V. COMPUTER REALIZATION OF THE ALGORITHM

The computer program DISPER was designed to calculate

the K = K(W) relationship using the numerical techniques des-

cribed earlier in this paper. This program will write the

(K,i) pairs as calculated along each mode to disk or tape and

will plot a graph of the (K,Q) curves, referred to as disper-

sion curves.

A. INPUTS

The inputs to the program are of two types: (1) para-

meters read in under a NAMELIST option, and (2) data points

read in from punched data cards.

1. NAMELIST/PARAM/XO, B, STOPK, STOPMU, ND, EPS

X0 Real
The X-coordinate of the last data
point of the numerically defined
function N(X). For the STD data
XO = 220. m.

B Real
Decay constant
For the STD data B = 1300.

STOPK Real
The maximum K value for which the
user wants dispersion curves.

STOPMU Integer
The number of dispersion curves
to be calculated.

ND Integer
The number of data points +1 to be
read into the array N.
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EPS Real
The error criteria imuosed on the
numerical solutions to the differ-
ential equations. For the STD
data EPS = l.E-7.

2. Data Cards

ITITLE Integer

Ten character title of the N(x)
values.

N Real array
Dimensioned 500, read in on punched

cards under the format (8F10.5).
N contains the equispaced data
points that numerically define the

function N(X). The points are
spaced a distance of XO/(ND-2)
apart.

B. OUTPUTS

1. Printout

a. The parameters defined by the NAMELIST option are

listed at the end of the program for verification

purposes.

b. The value of (N(y)dy is printed next, followed by
the values or N.

c. At the end of the calculations for each mode the
number of (K,p) pairs, the maximum estimated error
for K, and the complete list of (K,p) pairs for that

mode are printed.

d. Occasionally the error in K cannot be estimated.
When that occurs a message indicating this fact and
the current values of K and '1 are printed.

2. Disk or Tape

The values of the NAMELIST/PARAM/B, XO, STOPK, EPS, ND,

STOPMU are written on TAPE2 under the format (4E22.7, 215//).

Next the values of N are written to TAPE2 under the format

(8E10.5).
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At the end of each mode the number cf (K, ) pairs calculated

is written tc TAPE2, fcrmat (//15). The (K,p) pairs are then

written to TAPE2, format (2E22.7).

TAPE2 may be defined as a permanent file by using a cata-

log control card, or it may be defined as a magnetic tape by

using a label control card.

3. PLOT

A 10" by 10" graph consisting of the STOPMU different

curves of the (K,Q) pairs is plotted at the end of the program.

C. EXTERNAL REFERENCES

DISPER references several external subroutines that must

be provided by the user through control cards that attach the

appropriate permanent files.

The necessary routines are listed below under the name of

the permanent file on which they reside.

1. INTMODE

INITIAL Reads the data values of N(X),

calculates the integral

T N(x) dx

GUESS Calculates "best" estimate of K
given p.

DIFF Numerically solves the differential
equation using the Numerov-Manning-
Millman method. Called by GUESS.

XMU0 Function to find MU0 for each mode.

OUTPUTK Writes the (K,u) pairs to TAPE2.

PLOTER Sets up the calls to the CalComp
plotting routines.
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PSCALE Scales the axes to the calculated
data. Called by PLOTER.

ERRPRO Processes detected errors through
a call to ABRTJOB. Is called by
all of the routines on this
permanent file.

2. IDALIB

PLOTS CalComp plotting routines called
PLOT by PLOTER.
LINE
DAXIS
SYMBOL
NUMBER

ABRTJOB Error processor that generates
TRACEBACK, prints error messages,
and terminates the job. Called
by ERRPRO.

3. BESSEL

JBESS Routines to calculate the BESSEL
JAIRY functions. Acquired from the
GAMLN Argonne National Laboratory.

D. ERROR MESSAGES

We have attempted to anticipate some of the errors a user

might encounter when using DISPER under very general conditions.

If one of these errors is detected by the program the error

processor ERRPRO is called. ERRPRO does three things, (1)

prints a brief message describing the error, (2) indicates in

which routine the error oQcurred, and (3) terminates the job

without a dump.

A table of error messages generated by DISPER and possible

corrective actions that might resolve the problem is presented

below.
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TABLE 1. ERROR MESSAGES AND POSSIBLE
CORRECTIVE ACTIONS

Message Significance Action Issued By

END-OF-FILE,UNITS ND-i is greater than the number Decrease ND or provide more data. INITIAL
of data points provided for N.

INDEFINITE OPERAND Solution to differential equa- LooL for coding errors in the DIFF
0/0 tion is inconsistent, routine DIFF.

DIVISION BY ZERO Algorithm for solving the differ- Data points may be too far apart. DIFF
ential equation has broken dowm. Introduce more data, pernaps

through interpo lation.

FIRST MODE CANNOT Cannot find MUO for this mode. Reexamine data. XMU0
BE CONSTRUCTED

TOO MANY POINTS More than 500 (K,u) pairs are Decrease STOPK, or revise program DISPER
need to construct this mode. by redimensioning SAVEK, SAVEMU,

TEMPK, and TEMPMU.

KI and KO ON SAME Estimates for K are not upper GUESS
SIDE OF CURVE and lower bounds.

(1) EPS too severe. (1) Reduce EPS.
(2) Extrapolating initial (2) Reduce STOPMU or

estimate of KI beyond increase STOPK.
K values of the preced-
ing mode.

E. DETAILS OF JOB EXECUTION

The following is a sample card deck for executing DISPER.

1.

LA" L PLTaPE*w4TG.LBNO0EPLOTOeLf.XUWVVKINOI

ATTACH(pEetrLe Immpl)
*TFACH(MfA TPo1I)2rG)

ATTACH(ntmosT~kIO*Pn.MRt1'
MAP(OFF,

LnSET (L f ?nAL I iPSeEL/i%,PO()
EwfCUTE.

vpApAM .

PIILSF
.foeoonun,n.ln oonfi6

A* 5ffr,1 bofo 1'n001 a0 90n.l50tt

.'Io5 lflOIO fnlbo OOOiOSnACO OU1OOn Qflnn~flO:O.lC5UfOiOOOOnoU~fe1fiOOfEi

67
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This will rc-duce a ldsting of the (K,i-) pairs for each

mode and a plot of the dispersion curves. It will not create

a tare or permanent file of the (K, i) pairs.

if the user wishes a permanent record of the (K,p) pairs

additional control cards rust be included.

For a permanent file the deck would contain two additional

cards. The sample deck below is an example.

2.
IPUTOMT1 . nfPAPEn3,37SqAr';UEST(TA0FP**MF)
L A 1EL (PLnT AOF,.,RTkG.LuNOcAEOLOTt~oLOgx*4evgvSolo I

ATTACH(IIJAI tR10=C~sG)

ATlAcH(nr5op,*.tOuP-.MR=I)
MAp(OFF)
LfnAO(OJ~Py NI

LnSET(LIq8tnaLtH/PFSSEL/TTYOTI
EXECUTE.
CATALOG TAor?*vjSoCU=vEInpn)

PULSF

,01i0On nO. n"0O0 06
5nn 00 * n~~n;So 00 0V01nVn n::~t510n0

; 1 5 ' 0~o o ~ 1 O : l q n o 
0 0 0 0 q O n  

0 0 : 
1 0 0100 0 SU 

O Onn 
An 

n_: . . . n 0

,OlOSOlO n-.l gonO Ol O ~ OO ~ ' 8 6 T

.iooo Unouoooioloo~oI~ n n5ai~ ~ goo~aoOoI~n
678

If the (K,p) pairs are to be written to a magnetic tape

the Job stream might look like the example shown below:
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3.

IPUqTO*MT2. nAIP~.337q
LAMEL(PL,APF.URNG.LUNO' EEPLOTo~uLO,Xtv,VSki9UO
ATTACH1E StFL-m~Wvjs, T*P0W
ATTACHE10*19 ,1U=C6;)

MAI0 f OFF)

EILCJTE.
LA'SEL EXoj.0yEI uPCIIVP9XuSVeWOVSNu6
2PW1 4fJ(TApW)

PULSE

fl150n-lbo -iSb; 0fl0%0l000.fliooOS i:504:0 oiOS~nua.n fno6

No0000*te the cang i hejo ar a el a headiioa

Noetecag nthe job strea woul look lik the nextiexample
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Pr'JtJFST T* 90,*W.P)

ATTACH(PR~rLewujsIeuPn)
*TTACNI J0A1TR@1UZCG)
AT TACH Int!qONI Ok" !OSPA-"Pa I
MAOJ fOFF7

fLnSFT(LTF.'mTPAl 1/PSr5L/hflMOE)

L&#jLOXRvjm( =!@PC11NVEX5V9W9VSIJU0)

Cnv'y(T*pEp.U)

PIJLSr

;!sso~Ib'o-1sA5 1 ia on I nioOA aicio~ ioouu nonj

jis -aUtOo ofniioop:so.O ioeo"O.Ooonsno.-1nsnoond

7 
89
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VI. PROGRAM MODE

The computer program MCDE was designed to calculate

and plot the normalized mode functions T(v,K). Given (1) the

dispersion curves created by DISPER, (2) a set of consecutive

mode numbers, and (3) a value for K, this crogram will use the

dispersion curves and linear interpolation to find the corre-

ponding u values. It will then calculate and plot the mode

function for each mode number.

A. INPUTS

The inputs to this program are of two types: (1) the

outputs of DISPER, and (2) a NAMELIST option.

1. TAPE5

TAPE 5 is defined to be the disk file or magnetic tape

produced by DISPER.

B,X0,STOPK,EPS,ND,STOPMU The first record on TAPE5
is the defining parameters
used by DISPER to create
the dispersion curves.
They are read in under the
format (4E22.7, 215//).
For definitions see inputs
to DISPER.

N Empirical data, format
(8F10.5). See Inputs to
DISPER. There will be
ND-l values of N.

NPTS Integer
The number of (K,p) pairs
for the current mode.
Format (//15).
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Ti1

Kl, UIReal

The K and Ti values of
each mode, (2E22.7).

STOPX Real
The depth to which the
mode function is to be
calculated. Must be
greater than or equal to
X0.

IFIRST Integer
The first mode to be
calculated.

LAST Integer
The last mode to be cal-
culated. All modes bet-
ween IFIRST and LAST are
calculated.

B. OUTPUTS

1. Printouts

a. The parameters defined by TAPE5 and the NAMELIST
option are listed at the end of the program for
verification purposes.

b. N is listed.

c. Mode number is printed followed by a list of PSI
values for that mode. Format is (4E22.7).

2. Plots

10" by 10" graphs of the (X,PSI) values will be plotted,

one plot for each mode.

C. EXTERNAL REFERENCES

MODE references several external subroutines that must

be provided by the user through control cards that attach the

appropriate permanent files.

The necessary routines are listed below under the name

of the permanent file on which they reside.
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1. INTMODE

fr 2 (x) cix

DIFF Numerically solves the differen-
tial equaticn using the Numerov-
Manning-Millman method.

PSCALE Scales the axes to the calcui-

lated data. Called by PLOTM0DE.

ERRPRO Processes detected errors
through a call to ABRTJOB. Is
called by all of the routines
on this permanent file.

INTNP Calculates the integral

fN2(X)2(x) dx

FUNCT2 Calculates X * J(v,X)**2.
Called by INTNP.

FUNCT4 Calculates the alternative
asymptotic approximation for
X * J(v,X)**2. Called by INTNP.

PLOTMOD Sets up the calls to the Cal-
Comp plotting routines.

2. IDALIB

PLOTS CalComp plotting routines
PLOT called by PLOTMOD.
LINE
DAXIS
SYMBOL
NUMBER
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A3FTJOB Error r rocessor -hat generates
TRACEBACK, rin~ts error messages,
and terminates the job. Called
by ERRPRO.

GAUSS Numerical integrating routine
using Gaussian quadrature. Called
by ITNP.

3. BESSEL

JBESS Routines to calculate the BESSEL
JAIRY functions. Acquired from the
GAMLN Argonne National Laboratory.

D. ERROR MESSAGES

A table of error messages generated by MODE and possible

corrective actions that might resolve the problem is presented

below.

TABLE 2. ERROR MESSAGES GENERATED BY MODE
AND POSSIBLE CORRECTIVE ACTIONS

Message Significance Action Issued By

More than 500 pairs DISPER was altered to permit more Make similar changes in MODE. MODE
were needed for than 500 pairs to be calculated.
this mode.

The maximum K value The dispersion curves were not Rerun DISPER with STOPK greater MODE
on TAPES is less calculated to this value of K. than K. or reduce value of K.
than the K of in-
terest.

There are not STOPMU is less than LAST. Reduce LAST to less than MODE
enough modes on STOPMU, or rerun DISPER with
TAPES. STOPMU greater than LAST.

Indefinite operand Solution to differential equa- Look for coding errors In the DIFF
61 tion is inconsistent. routine DIFF.

Division by Zero Algorithm for solving the differ- Data points may be too far apart. DIFF
ential equation has broken dOwn. Introduce more data, perhaps

through interpolation.

E. DETAILS OF JOB EXECUTION

The following is a sample card deck for executing MODE,

when the dispersion curves are on a permanent file.
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FTN1 I ~-UUE9 k)

MAI' (UP*)
ATTAC'- ( IN I'IU1jt .*Oso
ATTMCm (tE SEL 0 tI',P
ATTAL"(1UAL1M, IuzCio

LuSLT (L It,= NTM)LE/SSEL/i),L t)

79

Next is a sample card deck for executing MODE when the

dispersion curves are on a magnetic tape. Note the VSN number

should be the one assigned at the tire DISPEB executed.

IPL).Ml,. LUNAPFk93? i lb
ATTAL(muuFtlI:WU)
F1N( I~mt)L,Ls'1)
MAPM(~F1
AT TAcH (I NrI OLr I Uzwo
AT' A-r(uf L'EL. 9 )P,C
ATTACH( IUAL~i,1U2C,

LAdLLUAFaHV1* *1,drbEPLUT9zLO#AuSVtVSNU0)
LOSLT CLIbajNTM()uE/rCb13L/ ILOALio)
GO.
89

S* l'T fl'AT2NztdbuPu~.
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VII. EXAMPLES OF DISPERSION RELATIONS AND EIGENFUNCTIONS
OBTAINED WITH INTMODE

The two Vaisala frequency profiles considered in the sample

calculations employing ITTMCDE are shown in Fig. 1. The profile

labeled "exponentially stratified ocean" corresponds to a deep

ocean without a thermocline and N(y) = .00528 exp - y/1300

radian/sec, where y is in meters. This profile is identical to

the one used by Garrett and Munk (Ref. 7). For the exponential

VgisglR frequency profile, the mode functions are Bessel func-

tions. Consequently, results of INTMODE for this profile can

be compared with results based on analytical formulae, thus

providing a check on the accuracy of the numerical technique.

The sharp thermocline, labeled "STD data set", is taken from

(Ref. 8) and is based on measured towed thermistor chain data

in the tropical Pacific Ocean. The data extends to a depth of

220 meters; at greater depths an exponential profile with a

decay constant of 1300 meters is assumed.

The dispersion curves for the first 25 modes, correspond-

ing to the STD data set, are plotted in Fig. 2. The angular

frequency is in radians/sec. For the STD data set, plots of

the first four internal wave modes are shown in Fig. 3 for

K = .01 radians/meter (X = 628m) and in Fig. 4 for K = .02

radians/meter (X 328m). The mode functions are all normalized

in accordance with

jo0I 42 (Y) IT2 (y)dy = 1

Since N(y) decays exponentially with depth, this normalization

constraint leads to a progressive increase of the mode maximum

with mode number and depth, a feature corroborated by the plots

in Figs. 3 and 4.
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I4TMODE is capable of yielding mcde functions of any order

(subject to course to the resolution of the data with respect

to depth. Figure 5 shows a plot of the 25th mode.

The dispersion relations for the exponential profile are

shown in Fig. 6; the first four mode functions are shown in

Fig. 7 and Fig. 8, for K = .01 and K = .02 radians/meter,

respectively.

Examples of dispersion relations for other profiles are

shown in Figs. 9 and 10. The corresponding profiles are, re-

spectively, those referred to in Fig. 12 as STD data and NRL

data. An additional example of dispersion relations, corre-

sponding to a pulse shaped profile, is shown in Fig. 11. This

profile is of the form

N(y) = 0; 0 < y < 65.45m,

N(y) = .0105 rps 65.45m < y < lllm

N(y) = 0; y > lllm.

In the region y < 111m N(y) was approximated by the rapidly

decaying exponential exp - Y/5.
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-MODE NUBE MODE NUMBER 2

01

-MODE NUJMBER 3 -MODE NMBER 4

FIGURE 3. The first four internal wave modes for the STD
data set (Fig. 1) (X 628 meters).
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K -0.01

SOMEGA -0.00091

t. a L 0 00 00.00 500.b 6000 .00 .00 .00 100.00

aMODE NUMBER 25

FIGURE 5. The 25th mode for the STD data set (Xt - 628 meters).
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me me e .. e am. W." wee MAe ime~ .j lA ~ .

" ODE NLtI8ER I MODE NMBER 2

2 77

;IMODE NU48EP 3 "I ODE NLUqBEM

FIGURE 7. The first four internal wave modes for the exponen-
tially decreasing Vdil1 frequency profile (X- 628
meters).
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O?*GA.0 OMG? WAGA -0 OI

-MODE NUMIBER IMODE NUMER~ 2

MODE NMBER 3 MODE NUMBER 4

FIGURE 8. The first four internal wave modes for the exponen-
tially decreasing V~is~l! frequency profile (X 314
meters).
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___ NTERNRL WRVE DISPERSIOtN RELIRTIONS
TO_ ___ o9

M_ 77-_
977

K, radians/meter

FIGURE 9. Internal wave dispersion relations -- STD data.
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INTERNRL WRVE DISPERSION RELPTIONS

MAIU ERO N I .1E0

K, radians/meter

FIGURE 10. Internal wave dispersion relations -- NRL data.
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INTERAL I4PVE CISFERSION AELRTIONS

jPtiL SE

MAXIMUM ERRtOR INK ISO0.113E-08

.4 .............

FIGURE 11. Internal wave dispersion relations -- pulse.
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0.0300-CASE I- EXPONENTIALLY STRATIFIED OCEAN

- \~ 'CASE 2- EXPONENTIALLY STRATIFIED OCEAN ',ITH MIXED LAYER, YM-50

CASE 3- THERMOCI.INE

S0.0240- 
.STD DATA SET

KNRI. CHAIN DATA SET (OCT 22,79)

- TCX3 DATA SET

>~0.0180-

0.0120-

>C0. 0060----

o 40 so 120 160 200 240 280 320 360 40

DEPTH. meters

FIGURE 12. VaisSIS Frequency Profiles.
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C PFArn PARAuETFR4
C

S PFA PARAM
POINT PARAM

1~0 C
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C

CALL INITIALISimilt
PRINT 7006. qUM,

C

C wliTE NAMFLTST AND N TO~ 7APr?

13n C
C

CALL OUTP,jT( (I,
C Fy~nr MAXIMIUM At 11E FAR %i

C
135 ,M !!N(

10KMDXUAMAXI(KMAX.NfT)11
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140 r'v . /Sum1

C
C CALCULATE INITTAI FSTINAkTE FOk THE INe'RPFPe'iT IN mU
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145 C
TnELT a .9 / SUIMI
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C

20tt rmKTINUEO

155 C
C CALCULATE THE UPPER trSTIMATC OF X.w1

K* MU 0 I(AX

C
1lfl C

C CALL SURReIJTTNF AUFSS TO IMvOVF TWE FS 1MmTt K
C K I I S UPPFP FSTmATE. K: IR LOWE R PgTTMbfFo IMF

C IMPROE FgTtmar rs RET"lwrng. IN K1.
C

loss C
C

CALL GUES9(KA,K9.M11)
C
C

170) C rNECK FOR EPPOP rOflEg PrTUMNJFO IN NT

C
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~Pu('Am rISPFWh

C u 9 Tnl('ATES TmF ALtrnQTTm rOt'Ln gi.OT PPO-
C nIlrE A K ~FOR uPG ON THE FTNqi "RANrH.
C KI !q 0,1T AkHOVE THF fCURvE.

1743 C
C

IF(NT !EQ. 4)CAll FRmPm 1 S)
C
C

IAO C
C
C
C ?WE MAXIMIum FSTmATEm FORUM FOR K TS
C RQTiRNED AV enUFRA IN THF VAQAAILF wo

C
FPSK m K

FORP4AX 2 AUAX(rPSKvrPP-&AA)

C INCREMELNT KOUNT. IF rGG (MO, K) PAIRS HIVF
R&5NCA~flLTEQA~gq~nlKNA T :E A C"E AN

F n CE AE fQ P Ilk ntAF

IsC n CFE ST~Q ;N ANNIFJAB a4ORTED& EITHER P"-
C fUcST 0- tr, RACE Hit MTMFNSI(9N Fl

T TEN ChANMI THE T 9 aN ~UN

KrLiNT w KnUNT ,

200 IF(KOUNT OF. qvun)CAiL ~rP~v0VI!R)
:AVFK(r*OUNT) * lv

c AvFMU(KOIINT) *MUj
C CALCULATE THE L'wER K EtTImaTE FOR TH! ki

203 C V'U VALUE
C yNCREMLNT MU
C

Kn KI # TnEFLT * KI / %0)

210 1 F(Ka m GT. STOP00M TO 100
1'0 a MU # TVFLT

96 F(fRMAT(1X' 'T3,2(sw.F'2A.l5i)
Ar to 200

C wr ARE FINYSHEn wITH THIS N1DANCH
215 C -

300 CmKTINUE
NP792KOUNT

qA F CURAFNuT (mI,.K) PAY05 In USE Ito VtTIMAIING
220 XI ALONG *HE NEWT HOmE

ne 900 Iwj,KOUN?
TFU0PK( 1)zRAVFK(YT

9G0 TFppmu(I)uRlAVEmHIl
225 (ALL O)UTPITK (KMIINT)

C
C
C PRINiT IHE MANIMIlm FROR FSIIMATrfl FOR K I'flt
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230 C P I T 9 , M O , F r

2SC PFCON IME NEXT a*hNCw
Pe, a NM E * I

ItUmotE .r~T. STmijI)vr TO AO
iooa rmhfTNuE

240 C
aiem XA4U(Mljoony)

KLNT 2 0

745TrEL7 XnELT

LrCUNT a0

C20i CPKTTNUE
C FFST APIPRnxTMATION MF w FtnD THIS APANCH

250 C prGi~c, BY IPIt.01N THP K FOR~ THE LAqT Rft*hCM

c nn 70 Lai,NPTS
TP.(TEMPMU(TI .(;P. mUiGM TO ift

26 CON~TINuE
25q ~ a NPTS &

c 3 Al 1tCPE TFM~PKIy.1) / T~mPf"11,7-1 )

C o!&LCULATE THE UPPeER PSTtaATF OF K,frq

260

KI , SLOPF * MU

C CALL SUBRnUTTNE nUESt TM 1m0PUE THE FSTIAoTE K
C X1i S UPPFP ESTYuATE; K! Iq LU"EQ ESTTmATF. T~~F

2AS5 C IMPROVED FATTyMAT TS REUHNrn IN I(1.

C

C CNECI( FOR EPROP r-0fEq ArTuNkirc, IN NT
270 C

C
C -T*Q A 14RAN114 WE ANTICIPATED flVU NnT

C f-#rUP WEPV. A PESI)LT nF OluN t%11-

C MATIflN PRntnisflPE FOR mUp
275 C

C
TV(N1 *EQ. 91G0 70 1A00l

C
22i rPtsTINUE

2Aol C
C

C TO.E MAXIM11m FSTvmATEn F"PUN FUN K 75

C PrIPMF.EO MY flU~te TN THC VADIANLE K6
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FROMPAX ft AMhX1(WP3pK.sRPmAA)

29n fC

C YNCRENINT X01INT. IT AOO (#41. K), PAIRS I4*VF
C PvENi CAL CtLATErP A~ QT009 NM RACMHQ %
C vcgnpl m~igAAE It Pn~k'TEm.* a rN EROR &3p
C ncKEPAFEI) ANDO TE JMR AFUwYFDj. EITHER PL-
C (!CE q1OPK( OR fkorgrAg v rpt jyr mfqMNOF

xrLNYuOUmT s I
Tr(XOUNT nE. Am~rl rfPPtI(7p

9 YF 'U(K~tINTI o mU
C
C CALCULATE THE LVMWER FrtTIwATE FOR yMF &txe
C mv VALUE

3fSC T1"CREP4EAT MU
C

Km 'KI* TWnFLT o KI / 'Ai
yoP(;a !GT. STUPvs fO TO~ 304

Mi*MU * TnFLT

310 rim TO zol
C
C

40 o!P%*1NUE
LUL s SAVrmtjtpcOgNy)

31S ENOFILE2 2

CaLL PLOTFQ(NPTa.1 9 Ku4X1
C
C

32 n C PMSiTTUN +HE~ Fyt o TO T~r boS6TNhNENr eOF
C THE FINST 4OnE

PwAn 12,9,R,Ko,tYOPK*EP*,N1*!TOPMtI
9S RmAT 4Ej%.79pv%/1iI

3;)13POINI PA~A&
yqlnp a Nm i'
PFA(2094) WNTI. I * t16rpl

94 FP MIT(SF~fl.5)
nm6 E00 4 a I$ *i'Q0mli

330 C
C
C NMh TO CALCIJIATo OmEnA rOw raCm MnnE &Njn
C PICf O'4E66 V5 K
C

335 C '6RE APAY q*VE"ul TM wOLM 16-r UMEGA VAI 105

1 rAfl(pq 9a)NOTI
Mr r,660 I a 1' 9 gloy
fpan~pt 1;") Satf!,.Il wit

340 cavEloulI) a tAvrwlY) / %'u
99 rrAAT(/1.%)

A- 8



Pout3RA r'ISPFf7

101 F~MTI',E27
icnon Cr.NTINUE

34S rALL PLOTrP(NPT~t*2 s ivMAWJ

A
0 0 0  

ITN

taLL ENDOPT

C4( c JO~B 19 COwPLFTF

A- 9



FIJK'CTTUN wmlI;(Y.flyi

VIPOMCN PSy(960I.Vg504I
cIAL MU
ooIj a Y * myv

5 'hALL r)IFFPVmti0..PSTMAX)

'1008 rPKTNUE
Trsj z psitjI

10 Ir'LN7 0 K(nUNT * I

IF(KOUNT n~T. g'mCALI FoqPa#9q7l
"~I] a mU * m~y
ChLL 0FlPF~mU90..PSyM&X)

XwU n w TOMU0
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OmECK nl'EqS

~MON PSflK6flN(%Onfl,hI.r~IAW.NT,ITITL

C ?,NE PiAAIMIIM FSTIMATEM FOPR FUN K 71
in r QwTijRNEn my nUFQ'% IN T~r VdGPTANLF wo

YV(K6 !EQ. 0. Ppt *

15 CAV D UIr FtIUAY?ON wITw. mii. n~o
C IF xb CLOcE ENfM"tnM. PETli~rgN P41w 1(1 s

20 C
C aTYrP T To FTN9, APN UPPEO tnfl"NU THAT I
C CLOWE TO K6. 1IS Iq s4MPE rFFICeTET~rOm

S TNCqE CASp~q wWFO KO I A5 -ie "CP LOS~R ESI1-
C WrT THAN KI.

KPLNT * 0

qL~qj;FlUjMn. Pq!M~gA)
( S S I STMAXI Cu. EPq)Eao TM 10

XI u KO
-10 Ne~~ ESTIMATE OF yh4E EppOp IN K PSIL

35 9A Pem ( K16 FRRvis rS?!MaTE IN K POASIALF NtDL, / Ka * * 22*7
I 3xv * Mu F20.7

Ki u FSK

in 'NTINUE

40 l7MRpiX *ARS(PSTfl) / PeTMAW)

4tTE01 (Kl KAI / T()

PKI a KC *STP

fALL nlFF fMIJ9K P9TMAXI
Trm AR(PqllvP -4 DSIuAAI

TXr(TEPM nr. EPQ MO TO PO
Sri * .M,:AQ((K1 - TEwPKl / TENN TEMPPAI) F PC

Tr * (;T. K ~Plrp~m' * ?wwM
Kft q FPSK
41 a PI - TFU~l

CV1iN

TuPkPK KT
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Tr(PST(1) *TEtT *LT. C.)U4) TO ?Pl

20? 1P INUE

c rDA0A, NO itIGN nw**jGF
PRINT 999MlJvx 0*w,,TEgT~nc1li)

99 Vrm~mT(IX*3FPO.i%)
65 Yr(KO .NE. 6.l TM ISO5

nFl7iRN
C
C

C NeW~ USE TwE PEr.i'g * FsLvT MrYI.OU

79 c201 rmTINUE
qm~LNT NO-
NCO-C0 2 Al

200 7(Q TFT * twI.(A) I (TrcT -PAI(Ii
40  KrPLNT a KCIINT 6 1

IF(KOUNT MT.y ?RA0fl To P40
CAVF2 8 a i
CALL fOIFF(MfJ9K?.PSYMAX)
T~pm . ASq(PiqI(it1  IMx

pis IF (TE4 M MFW. Eaq) On~ TMl 21;
YFAMI a AUSU(K? . TEuP(1 /fTERM TEMpMX)) *EPS
!Pr(TERMI OT., F0491 rPSW 8 a M
KO0 a EPS(
K17 K2 - TEAMI

90 R tLip N
216 CnFTINUE

TVP~PpX TER

95 221 t (TEST * P1I(,il 2109112
0 0>?O

26C1'KTINUE
P26 fPITINUE

KV x K2
T;Sf - PSj(j)

1too PAel!) a * V
a 200-

230 reV~iI NUE
p36 rM'ITINUE

KA u K(2
1(79 Vm to 00

240 rtINtINUE
IAEa PSj(i)

C p.TFRVAL H.ALVINV,
110 C

285 CMKO NUO
KrUNT 2 Kn1IINT s

Tr( ( OUNT M.;InT -q
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114; Tr'VPK 8 U

X(, a (K1 * l/>

CALL DIFF m(j,xi;,PJTMAv;
3FM ABI(P 0 ti 0 TMAX

Ip t TF4TF RM *LT. PP~jn To 100

lr(tEflMI.LT. l.w6Gn T,4 3n;

IF (TEST * PST0' .LT. 0.1ull TO PAP

121; C KM ArKI) K2 APE ON' THE SA1.F qTMES

KA K
2

TFi PSj(1)

130 2AA mT14p

C KA ANT) K2 APP (IN OPPnSY'F qTrES

c K2

13r) a POWti
OP' TO 285

290 CONTINUE
c
C PARMA PROE-SSINt

140 C
c
C 9" 9 Im~nCA*El OVF SO) IT!UATIO'NS

C WAvE QeCUcEU@ PUT Nn SATISPAULTURY

C F*TT'AATE RF PACE

145 C
K, 9

PE ToRN
2Sh CNTINUE

c

ISO3 c A- SIGN C04ANAE WAS OCCUDEV- FIII4ER

C Ko IS TOO LAPGE MR Ki It Inno SMALL.
C THEY LIE MN TH4F qAmE SIMF OF THE
C 0,1';VE

IS% CaLL ERRPOO(EI)
C

306 rrNtINUE
C
C kOPMAL REThJREN
C

161TF~mj a AaSiKP - TEmPXK 1 (TPM *TFWPmXll * lPS

Tr(tERM K F0K)EPSK TrM

KI x 
2 

-TFpMl

A-i13



*r%ECK MnCF

* A rnC 6400 P~nflfAM

*PROGRA~mER

* ImaTTTUTE rn" nFFNSE ANBLYSIb
* AQi TNmITmM VA.

lIn MA~eIw 26;9 7qkin

*mcflE CALCtJLAvvi Amo P-A'ue m(,DE

* UNCTIfMNS Fr'O OTSPEgeIO CURVE9

*CRPATEl AY rmmPANON P"O1PAM

*PROdl-Em

* (1) TI4r flTFIFFNTTAL pQIIATLfnm

20 D* (Pt!) /tx fl 0* P

* Ki*; -01* *0 * t'(X)*021 PSI

0 NO * CXI' f-dX..Xftl1j8)
75i 0O .rw . GE. wo

* h~fIMPTCAL flATA0

*~O P0 f.LE. X *LFA XO 0

*1 Rfl11NfApy Cnwin9ITION 0

*O (I mu0
* FTi~n Tolp SflLUlYf!N TO
* Twr t0TFrERrlJ1I EQUATION

C yTKPuTS
C Nv% INTr(SER N'lMQFD no UATA POINTq
CA IREAJ MECAY CrfMANJT
C x REAL LAST v rUOP4DTNAYE OP

C N~U~rPrf-ALIY nErYNEM
c nae kC!)
C Fi REAl PRnP LRITERIA FOR

r gntLiiTILON no nIPFE-

Cr c ONTIAL LOUATION
C K PEAl THE VALtiI lip K UP

C TNT~rPST
C 4tYnpv Rfal NOW FAN Ulif Top X -

C AXIc N'UnE FUNjCTInNt
c APE Tr~ HLc LALCiLATrn

C N REal ARRAY INAT mnLr S
C THE NlfMFMTGAt mATA
c OMmNSTONen %;
C IFTAqT 10frtOEM FyRcT iwnUp OF TNTE..

C LAqT 11N17r-PF I IaS? vUnt UP INITE

A-1.4



C
c C~iTPUT

r@ OcthI~ AIJAAY T~4aT 9"nLnS TMF
C Moor FUNCTIOI

C ny-AVNSONriP r~
c

rel'MCNJNPlJc/QA Nu X; Fn QTPl S~n STUPA.
rf'PMCN PST'@; -N(o'.O~T~AX.NYT1T1"Lo

r7A K , Mu.19 K, .110,. mu1, Nfl

N~AFLIST/ IuqP11T/ NO, W,;9 FPpC TIPST. *qRI. K. qlOPV
PT w ACOSf-1.)

C Orpn THE vflENT~rVTNt PA"AMFHFW
c FQCME T APFS

PF~l (5 ,9A', P XA .STOOK ,rPS~ih,.4TOPM11
C

C CFAD INPUT
C K*!TOpAqIFTP0qT. AST
C

nVAn INPUT
C
C
C PONT~ NAMFLlT/TpthPiIT, FeM VefIFT-
C CA1 IO~v TWFN POTNT N4X)

c PINT INPOIT

1;Pl(,rT RTOPK~ a L EPnOTW 1 FR,
IF ST. S DM) CA'IL 4AP'O

CALL. INITIAL TO REAO TI~r VAI 1'-S

C5 c M NIX) OFF TAOr S

c nrT NIA) MATA. AND CALCILATP* UELTAX

CALL INITIALISIl

COINT 99

TvTOP a Nn

Ing; rFLTAMU 2 PT /titu,
TF(iFTIIST *FQ* '10 ,0 nt

cC AOrdANCE PmTNtTEP To TWE

110C FT~cT MOOFl OF TkITFQEtT9 1TPIOCT

TcTnP a IrIPPT-
R06 I isp TR'OP
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fr cn j i 1. rNOTS
C' A .; IO n OUNv -*Im

5015 t-C'TINUE
509; rf'NTINuE

1~v~ rALL PLOTc(jp0 ..nJ

c n ' 10 I a 1FIR~t, LAST

C

c POPF EACH OF THF t~nn~q

PPhrn(S99)NPTS

M110I 4I q ) 0 nFLTAMI'

11o r-C5 ,1 OT

C OFAn EACK (K, nmFGAI PATO I' FTNO) k ITP

?PCKI *GT. 1(160 TO Sio
1-4rK" K

mu. mul
526 rI'NtINUE
5IA l0?TINUE

14n C npO LINEAR TNTEPOnLaTON

ql-CPE x (K~i - KAI~ ( 4IJT - Nlb
YTrKT x = - gLeor*u~

'Il a( - YINTI / RLnPF
145 POINT 99

POINT 101 m,w
C
C qMLVE UTFFERENTvAL EVIUAIUI

I~l rALL nIFF ml, ,PqM

rALL INTN~K Ni

AN XN 2 Pq X i TAXRT

C
C FAFO1R CONnyTTO~i
C rwECK THAT NUM ROOT GnEATFN THAN T14F Dym~hgintw OF N

Tr(NUM *GT. 90mjrALL eRPnO(TIW,

lAOC FILL IN TuE REq? OF MST
C

KVT ,NUN Nn
ThnOx2 K 0 A

raLt. JdSg*(INn. is APO 0 eWIv(-tL 1) ii*uFLTAX -E
Il PlIlNlhin Lfl

SOr CmK+INuE
C

F~n C 'MALIZE
c
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PF9J(,PAPM 110DF

rr 97'i L a ,N~

P'tI(L ) a P-,T(L) / ;On T (elIml
s7 rpNtINUE

179 C
C

C nP PLOTT!N, ANn rOUTPlITTYP'(O WFPHE

C
POINT 98, 1

j~nPOINT 10IoCP'tI(YT~o TI - KPUM)
rALL PLOTMi)f(NtL.I.TK.K #Mile AMAXN

TcTART II j 1

C IrVNCE PnTNTEP TO NrXT MUrp
11,1 C

nr c;09 I TqTAOT, NnT4;

45 rmh~TINUE

190) CALL ENOPLnT
qTCP

195 9A F(ISMAT(1Mivel Mr'rw NUmREm **Tj

A17



*rECK r'YFF
elPpOU1INF nYFF #mjp 9 ,PcTMAW)
rmMON' JNOIITq/R.NOX;,EMSOqTnpMUSTP, bTuPA

9 'ilAL Nu.NMII, n

C
C
C TwI.S TS TwE NUmrooV - MANNIO - MILLMAN lspIwU(
c Fr SOLVI~in SECnND On1)"m LTN'FAW fl1FFEPEPYl1AI

10 C mtAT1ONS
C

FeX),K*02 -MU.., 0 yo*7
rnaST(Xgy) =F(Xs*Y

Tr 2 p a NO

C nrF N~E FIOST Twm VaLuIES OF Ocl

TFPP 2 =MU*k46
CALL J,8ESq (TEMo1,19TEPmo 2*itp(-OELTAX / )9PSI(1I)
CALL JUE 55 (IEMOl,1,-,EM02,PtTt2)l
TrP~mDELTax*2i

PRIMAX a ARSOPef2l)
25 C

C 9MLVE THE EtJATTnN BACKwA~flt
C

00KMw1.-TFRM*F N(ND..i+,)
P5q (I) *XNI'm/rtklo
TFtPumLLGVAP(PST Wy))

is Tr(!ERH.*NF.6) GA TO 400
106 0P 1I4AX AMAX1(APS(PqT(T)).DSIMAX)

JtTAP * !TOP/

C
C OrFCROEH Pci

40 C
nflo 706 1, JeTOP
I N C V A ST OP'l -
TrkPsP5S (y

45 206 Pt I NUEX)mTFMP
nruN

906 fft.TINuE
!V(TEPH~ iT. Q)YFRG3;
rALL ENRPaO(TEPO .I
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copPrulIKE ,NTNiP

rMECK TkTNP

nFvAL NUNmlJ 9K
VXTFRNAL FIJNCT?. FliNlrT

4

AinG , K

Uq~' x 5*( ',.q~1 ~*,*P (N(N)*PS(Nul*2j

in TgrMuMU*R*f;C
TeynlpuND-T

= SUU3 * nli Tax

115 ~ TF5T a (2. fK 0 Wi?
TOST a ADq((TEST - 1.) * 9.))~

TFST s TE9T / *iA I.r3

TFST * SOPT(TES'.1
IPFR AMTN (TrqT, TEul

20 7m GAIJSS(4 , 0.. UPFR FUPrT2)
T,(TERM *rT. TFQT1 7  n A1,SS(4, TEqT. TLPM, FIIYCTA
7 2 Z / MtJ**?

fnF T,,IRN

A- 19



Fu9 OIrrK rUNCT2

rtINCTTON Ft)NCT~fX)
CtrMNI~IAQNOAF"O~~~qoK STVPA
CNItMON PSj(qo).Nton)oolonrLhXNTITTILF
rfkMQN /FIINC.'K

5 PFAL N(J.N,K
CALL J8ESq(X*8,i.x.8rsqV
rlN Ci 2-RE q**2
PFlr UN
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VIJMI!rN #UINCT4

FUKCTION FIINCT4191

rrMN /IiNCT/
9; OPAL~ N09WOK

C
C
c AqYmPTUTIC APPR#AK!MA+10kj I.Ofl J(* X)**j*A
C
C

Pla ACOSc-I.,
TPM I=4. /0!
7Tr~m .IK*
rIaccua - t~c 0 ed* *7) *P

Urm 4 * TrMl40 1 j.) / (P. * X)
rI!KCT4 a TERMI~ OIMIAn %T4m3 SI* HAI*
flr TiJAN
Vp C
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Cll~Or'UlTNE T4ITTAL

tU~p~tjTINv INITAL (ftJMi)
MON/INPhJTq/a.NoX~t,oTI94tS~TP( bTuPA

CMPMON P~(fO.(O)kflnLAoT1IL
nrAL NO,N

C rALCULATE nELTAW FOOM X; ANM9 NO

In nrLTAX u Vf / (Pimn-

CC Pr NUMEI,?CAL 'IALIIE~c

YToP x Nrm - 1.
PVAf(59 4 S;ITTITlr

456 Fpgm*T(Al;)
PVAO(5*406 (Nlv,,T , I.TSTMP)

C CALCULATE W &M WBLu1E OF N

K-11 - N(NO-1
1% U NAI Excl-nE, TAI/til

C CALCULATE THE I.JTElRAL mF h

yRTflP- Nfl - 1
nuP 1 0fl 1 29 TO160

306 quk'l a SUTM I * #T
in 1 lwj aSUmI 10 fli TAX

COW!1 s 8 * NO # VUMI
Q'r1,jRN

C FPP(OR PRO ESSNAl

706 CALL EHRPDO(1)
PjrTIIRN

A- 22



CiiQCUIIK !.moTPUTK

OnECK MUIJIUT

r MN INP T J.ot;IF.VPQUST ,K

~f VMON PSIt56 01 ejq0A) .*o,0nFLTAX~wTs1TlTLr

InP8L Not. N
reMON /011T/ X(AnflO.Y00fl1

c fV(KOUeNT NE.1 M 0g

In c fL0~ YTF AUSe ~X
C '4@ITE lDE0MT!FYYflrn PAOAMFTE~q To TAPE P

Yc1nP 2 Nn-1

56 C'ANTINUE
C

c PRINT NUMQFQ OF PATR't Afln f.yT
C TiME PANTS TO OUT~PUT

75C wqIjE 
T
HE NlJMBFP OF PAIRS ANfl

C THME PARS tn TAPP 2

PRINT 9s,xnUNT

I-E(~1

is A FMA IMPj 15)
pprFMAT(4T.;?q/

40 i3)
ENO

A- 23



911PR(rlIE HrWPRm'

IqUpqoiUTlNr FPRPcn (NJ

C Tw.IS EHROP PQOCrcSTNn sIIpmotiTINE PPFSoiPpuvtq
C AN ICA TYDF FNVICONMrNT WITH CIJC 6400 E(%Ulw.

C;C U"jKy, NOS/RVI 00FRaTiN, SyTFM

C
C TWdE ExTERIJAL R~rFPFNrE APTI!8 19 A RO0jTINL
C MT'TEN 101 CnMPAqS TnA rNtA*Tt EPM P ESSAtiPS9
C INITATE Tq4AE MACK* ANM AR4nPT THE

InC JPH WITH MUIT A nIIM0
C

1005 CALL AUR JW0(4*, L AMfE YAsN 1.00 AIR 00pia 0 *.J&EIANII
1006 CALL A8RTjmR(60 L THr MAX110110 K VALUE~ ON TAPk5 19 LESS THAR, THE K

1007 rAL (36 1 THorAE AMP NOT ENnIJOw NUntq ON TAPEK)
70q CALL AdRTJfl9(2mI END-OF.FILr9 UNIT S)
8 0 C'a LL AdRjj0A( 16' KnU&IT T.OO I.ARGE I
900 CALL AFBR T jfl( pAI INnEFYNIYF OPEPANO (I # I

20 O2 FaALL AURTJOR( nilvAsToh MY 7EROl
1001 1ALARJ~30 CANIU FI~im MUO FO 7HSmnUE1
'062 CALL ABRTjog(1 6i TOIO MANYV PrMyNTS)
1003 CINTTNUE
1004 CALL AtIRTflR(3! K~l AND KI flt SAME SMfE UoP r.URvE
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ef.'POUYIINr PLOTmfif)NPT.Mflp.AKoXnmSTEP)
C~mpCNlNj;/ N1-os!Ii' or ~0, ~fPy~;(P~ UP A
CHO'MON rS i nol).FPot 06 .~flk:rLT*VATdJ 5
nyTf'N~%I N DEL (4 WX (II t PY (II)* NPLT 150v I* YPLOT Modl

95 FCLTVALENrF(PST.YPl-0T)

nf * CTEP* V.
CALL P5CA E (OELtIA f
frfLI1 a qTOPX In*A

inl ne 100 131,11
X j a jT- l ~ j j,>)I

YY(T)8( - 6) *nEl, (41
106 rrKNTINUE

i5 XPL nT( M T1*i D~Lp TAX
200 eCfNTINUE

CALL flA~!q(6.,fl.IQHoSI S1e/SwRT(MFyEn) ,~.*5990*yye1*oi4r6.l,

CALL PLOT(VI.o 1.9 -Ii
CALL s~M~nL (ego 4.5, To9 Vl.4Ku 0.. 2)
PALL NUMSFR (.F. 4.5. it %we 0.9 4HF4*po *1

CALL nAXIq10 .o A. 15uDETH yT& mETE359 Igo In&* 0.0 Xxo j.si'W7.p
.1 7

CALL SYMRmfL(2**.%,, .29 IMOIE NUt'9E~q o.9 11)
CALL NUMBfP (4&-. ' n1 s 'A;i' I
CALL LI~XPLO. YpLT NToo 1I0 0
CALL PLOrhi2.9.9-,.1)

30 PWIIJRN
VPWC
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siiprruIlphF OLOTEP

"t CK of-Cy

qlC(UJI!NrPLTWA(NPSM.K"Al
COn'MCN OUT/XPL T( t5aQ9 vPLOT(S0 0 )

, :AOf Kf euP A
rTwFhEqlON flEL(4'.Xx(iI)VYyfij)
PrhL KMAX

-6 r T Io. , e

mFlL(?) * f6pK 1 16.

nrL 3) ;
rmrL(4) 3 MAI

C ALL YSCAI.E CnEL I4fl
I ;nm. 101 a Is 11

)tV(T) iT-1) * flEL( 3
Y *j (1-11 * nLi

Pn CALL DA XIt I 6.9n..qMI (flAUAIS /METI-Q).19olu.,O.,XX*i.,N.F6. 4g6)
CALL SYMeL2.9'R.9oe lvvAmv~jTENAL WIVE UibptRSInN RELATyf9NSo0..
034)
CALL SYMRML(4.,@*.9f.21 ITTIF !.9,0)
CALL nAXI,;t 6 .,0 . ,ij.OEa-o.o.,Vooy,1 e.44P6i.4,8

213 26~~ P;rTUPN ySi09DL20 CLL LINE:X)PLOI. yPLOTOsincL
fraLL PLOT 0 .90 ...1 )
rT uP N

38 CrKNT!NUE

3n CALL Sym'umL(4.5..5,.~l1 9,%#*hAXIMU9 FpRR IN K 199A*9211

C:LL wmERFIX0Lnl. OLO'.Fj
CALL NUM8 F XOL Yn~Lrmo*,j9%EAAv 0. .qHEto.j*I")

FK 0

A- 26



iti,pnolIKE DSCALF

ZUPQcUT INE PqCao F(,;CiLE I

TP(oC4LE G~E. Im MOQ TO 2
I Jss ALEOTF~m

TP(JOGT.01 iqn TA~ 1f
Tr~Fm TEPM *In-.

2 JUSCALE/TFQM
IF( i LE. Ifl)SM Tm '0o
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